MOMI-Cosegmentation: Simultaneous Segmentation of Multiple Objects among Multiple Images
نویسندگان
چکیده
In this study, we introduce a new cosegmentation approach, MOMI-cosegmentation, to segment multiple objects that repeatedly appear among multiple images. The proposed approach tackles a more general problem than conventional cosegmentation methods. Each of the shared objects may even appear more than one time in one image. The key idea of MOMI-cosegmentation is to incorporate a common pattern discovery algorithm with the proposed Gibbs energy model in a Markov random field framework. Our approach builds upon an observation that the detected common patterns provide useful information for estimating foreground statistics, while background statistics can be estimated from the remaining pixels. The initialization and segmentation processes of MOMI-cosegmentation are completely automatic, while the segmentation errors can be substantially reduced at the same time. Experimental results demonstrate the effectiveness of the proposed approach over state-of-the-art cosegmentation method.
منابع مشابه
Object cosegmentation using deep Siamese network
Object cosegmentation addresses the problem of discovering similar objects from multiple images and segmenting them as foreground simultaneously. In this paper, we propose a novel end-to-end pipeline to segment the similar objects simultaneously from relevant set of images using supervised learning via deep-learning framework. We experiment with multiple set of object proposal generation techni...
متن کاملWhich Image Pairs Will Cosegment Well? Predicting Partners for Cosegmentation
Cosegmentation methods segment multiple related images jointly, exploiting their shared appearance to generate more robust foreground models. While existing approaches assume that an oracle will specify which pairs of images are amenable to cosegmentation, in many scenarios such external information may be difficult to obtain. This is problematic, since coupling the “wrong” images for segmentat...
متن کاملJoint Cosegmentation and Cosketch by Unsupervised Learning
Cosegmentation refers to the problem of segmenting multiple images simultaneously by exploiting the similarities between the foreground and background regions in these images. The key issue in cosegmentation is to align the common objects in these images. To address this issue, we propose an unsupervised learning framework for cosegmentation, by coupling cosegmentation with what we call “cosket...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملOptimizing the decomposition for multiple foreground cosegmentation
The goal of multiple foreground cosegmentation (MFC) is to extract a finite number of foreground objects from an input image collection, while only an unknown subset of such objects is presented in each image. In this paper, we propose a novel unsupervised framework for decomposingMFC into three distinct yetmutually related tasks: image segmentation, segment matching, and figure/ground (F/G) as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010